
Backup File Artifacts
The Underrated Web Danger

TESTING AND EXPLOITING BFA WITH BFAC

By:

Mazin Ahmed

@mazen160

mazin AT mazinahmed DOT net

WHO AM I?

 Mazin Ahmed

• Freelancing Security Researcher at Bugcrowd, Inc.

• Security Contributor at ProtonMail

• Freelancing Information Security Specialist

• You can read more at https://mazinahmed.net/

https://mazinahmed.net/

WHO AM I?

 And I have contributed to the security of the following:

Table of Contents

 Introduction

 How BFA Occurs?

 Background

 Previous Researches

 Wrapping Ideas Together

 The Problem

 BFA Findings in Real-World.

 Introducing BFAC

 Using BFAC

 Mitigations

 Questions

What is Backup-File Artifacts?

Background
Code Editors

 Code editors makes a backup copy of the files that being edited.

 Mostly, it's being done in the same directory of the file.

 It's made using the same filename.

 It uses predictable patterns.

Background
Code Editors

Product Name Backup Pattern (Assuming the

filename is config.php)

Emacs #config.php#

Nano config.php.save

Vim (swap file) config.php.swp

Vim (swap file) config.php.swo

Vim, Gedit config.php~

Background
Code Editors

The Problem

 Developers mostly forgets to check for Backup File Artifacts caused by

code editors, and underestimate the impact of leaving similar artifacts.

 This would lead to the disclosure of the source code of the script that

has been edited.

Background
Version Control Systems

 Version Control Systems (VCS) are systems made to manage

changes on files, documents, computer programs, code, websites,

etc…

 All Version Control Systems has a directory by design that contains

data and/or source-code.

 The directory is made to have a backup of files, and to control the

changes on the files within the project.

 By design, we already know directories names, the important files,

and the directories' structure of source-code version controller

systems.

Background
Version Control Systems

Version Control System Pre-known Files and Directories

GIT /.git (Default Directory)

GIT /.gitignore

GIT /.git/index

GIT /.git/HEAD

GIT /.git/refs

Mercurial /.hg (Default Directory)

Mercurial /.hg/requires

Bazaar /.bzr/ (Default Directory)

Bazaar /.bzr/README

Subversion /.svn (Default Directory)

Subversion /.svn/entries

Subversion /.svnignore

Background
Version Control Systems

The Problem

 Companies and developers in many occasions clone or download

the repository into production, and FORGETS TO DELETE THE VCS

DIRECTORIES.

 This would lead to the disclosure of the source code of the

company's application.

 The worst part: many websites don't disable directory listing, which makes

exploiting that like a piece of cake.

Profit?

 downloading the VCS directory would be as simple as:

$ wget --mirror -np –I /[path_to_vcs_dir] http://example.com/[path_to_vcs_dir]

Background
Version Control Systems

The Problem

 In case the website disables directory listing, exploitation is still

possible.

Background
Version Control Systems

The Problem

 Exploitation of Missed VCS Folders on Web-Apps When Directory

Listing is Disabled:-

 Simply: Brute-Forcing the VCS structure.

Background
Version Control Systems

The Problem

 Exploitation of Missed VCS Folders on Web-Apps When Directory Listing is

Disabled:-

 There are tools that can do that too:

 GIT-Tools by Internetwache: A collection of scripts that can be used to

retrieved GIT repositories from the web-app, even if directory listing is

disabled. Written in Bash and Python.

 DVCS-Ripper by @kost: A tool that can perform recover different

repositories even if directory listing is disabled. Written in Perl.

 DVCS-Pillage by Adam Baldwin: A tool that extracts and retrieves
different DVCS repositories.

Background
Version Control Systems

The Problem

Background
Human-Based Missed Backup File Artifacts

 Developers usually do a backup before attempting to edit files.

 Example:-

Editing index.php

 Before editing, many developers do the following:

$cp index.php index.php.bak

 Developers in many cases forgets to remove the backup file.

 It may even be left on production.

Background
Human-Based Missed Backup File Artifacts

The Problem

Impact

 An unauthorized attacker can brute-forces through different

patterns of human-based backing up, and check if the file exists

and accessible to the public.

 If succeeded, the unauthorized attacker would be able to view the

source-code of the script (Source-Code Disclosure).

Background
Human-Based Missed Backup File Artifacts

The Problem

Previous Researches

Pillaging DVCS Repos For Fun And Profit - Defcon 19 - Adam Baldwin – 2011

 The talk discusses different leakage of Distributed Version Control

Systems, and how it can leak the website’s source-code and data if it’s

incorrectly accessible by unauthorized users.

 A test on Alexa top 1M was done and showed that roughly 2,000

websites were vulnerable.

 A tool called DVCS-Pillage was released that helps retrieving repositories

from websites that exposes them.

1% of CMS-Powered Sites Expose Their Database Passwords - Feross

Aboukhadijeh – 2011

 A research that shows how can human-based backup artifacts and

backup artifacts made by code-editors leaks sensitive data on

popular CMSs.

 Also, tested Alexa top 200,000 websites for basic BFAs on CMSs

configuration files.

 Results showed a large number of high-profile websites had BFA left
on production.

 Wrote a tool that can detect basic BFAs for CMSs configuration files.

Previous Researches

Don't publicly expose .git or how we downloaded your website's

sourcecode – Internetwache - 2015

 A research done by Internetwache on GIT VCS, and how it can leak

web-applications' source-code and data.

 Demonstrated different techniques for real-world exploitation of missed

GIT repositories on production.

 Tested Alexa top 1M websites for web-applications that left GIT

repositories on production.

 Published a set of scripts to automatically tries to retrieve files from GIT

repositories.

Previous Researches

 Backup-File Artifacts are caused by different ways, mostly, it’s the admin/developer
mistake to allow it accessible.

 Exploitation of Human-Based BFA and BFAs that is caused by code-editors can be
done as the following:

Example:-

Saying that index.php.bak is discovered.

Wrapping Ideas Together

 Having the meta directory of Control Version Systems accessible also

leads to source-code and data disclosure.

Wrapping Ideas Together

Wrapping Ideas Together

Source-Code and Data Disclosure

Human-Based Backup File Artifacts

Backup File Artifacts

Caused by Code Editors
Version Controlling System

Meta Directories

Backup File Artifacts

 Most Open-Source and Commercial Web Vulnerability Scanners DO

NOT PERFORM TESTING FOR BACKUP FILE ARTIFACTS.

 Examples of Tested Open-Source Scanners That Do Not Perform BFA

Checks:-

• OWASP ZAP 2.4

• Vega

• W3AF – There are partial plugins that does basic testing, but it’s

disabled by default.

• Nikto 2.4.6

The Problem

 There are very few current Scanners that performs Backup Artifacts.

Testing. However, those rare scanners only test the very basic pattern of

BFA.

 Many Important patterns testing are MISSED!

The Problem

BFA Findings in Real-World

Paypal BFA That Lead to RCE - Ebraheem Hegazy

 Ebraheem found a script called upload.php on a Paypal-owned server.

 wrote script to test for BFA, and to check if the script exist on other
subdomains.

 Found a BFA for upload.php, and transformed the Blackbox testing to
whitebox testing.

 After source-code reviewing it, he found a bug that leads to RCE.

Profit: Got an RCE exploit on a Paypal server. Paypal fixed the issue, and
he was awarded a nice bounty.

BFA Findings in Real-World

ISC.org BFA that Disclosed Database Credentials - Feross Aboukhadijeh

 During Feross’s research, he tested ISC.org for BFA on Wordpress
configuration files, wp-config.php.

 He found a BFA left on the main production site of ISC.org, containing

database credentials.

Profit: The researcher had potentially valid credentials to ISC.org

(“potentially” is said, as the researcher stated that he didn’t use it gain
unauthorized access). Feross reported it to ISC.org, and they have fixed it.

BFA Findings in Real-World

A Collection of BFAs - Mazin Ahmed

 Used BFAC to discover a number of BFA issues on web-applications, mostly
for confidential clients.

 BFA Findings Leads To:

• Credentials leakage.

• Turning testing to whitebox.

• Finding additional security vulnerabilities.

• RCE.

• SQLI.

• XSS.

• Even more BFA issues.

• etc...

 About the Project:

 BFAC (Backup-File Artifacts Checker) is an automated tool that

checks for backup artifacts that may discloses the web-

application's source code.

 BFAC goal is to be an all-in-one tool for backup-file artifacts black-

box testing.

Introducing BFAC

 About the Project:

 Code Specifications:-

 Written in pure Python.

 Compatible with both Python2.x and Python3.x.

 Cross-Platform: Works on Linux, Windows, Mac, Android, and IOS.

 Requires a slight amount of resources/modules.

 API friendly.

 Released under GNU GPLv3.0 License.

Introducing BFAC

 About the Project:

 Features:-

 Testing all common types of backup-file artifacts patterns, including human-
based BFAs, and BFA that can occur via code-editors.

 Includes tests for common VCS artifacts, such as GIT, Subversion, Mercurial, and
Bazaar.

 Smart detection techniques: Capable of detecting "Not Found", and valid
pages using different tests.

 Stealthy Interaction with Web Servers.

 Easy to edit and customize based on needs; easy to add custom BFA patterns.

 Dynamic and generic; made to be not specified to test a specific environment
or server.

Downloading BFAC

BFAC

https://github.com/mazen160/bfac

https://github.com/mazen160/bfac

Downloading and Installing BFAC

 Cloning BFAC

$ git clone https://github.com/mazen160/bfac.git

 Installing BFAC (for *NIX machines)

As simple as:

$ python install.py confirm

https://github.com/mazen160/bfac.git

Using BFAC

 Performs basic tests on the link, showing all attempts, and using random user-

agents on each request.

$ bfac --url 'http://example.com/test.php' --verbose --random-agent

 Ignore 500 and 503 HTTP response codes when is detected as findings.

$ bfac --url 'http://example.com/test.php' --verbose --exclude-

status-codes 500,503

Using BFAC

 Default option to confirm the existence of the BFA is set to check

both of the HTTP Status Codes and the Content Length (set to

“both”).

 Rely only on HTTP Status Codes for confirming the existence of the BFA.

$ bfac --url 'http://example.com/test.php' --verbose --verify-file-

availability status_code

 Rely only on Content Length measures in order to confirm the existence of the BFA.

$ bfac --url 'http://example.com/test.php' --verbose --verify-file-

availability content_length

Using BFAC

 Perform BFA testing for all current testing levels (Level 4 includes tests from all

below levels).

$ bfac --url 'http://example.com/test.php' --verbose --level 4

 Print a clean output with only findings, separated by newlines. Suitable for APIs

and integration with other tools.

$ bfac --url 'http://example.com/test.php' --no-text --level 4

Mitigation

Developer-Level:-

 Awareness

 Probably the only reliable solution.

 Developers' behavior regarding actions on production-level and publicly

accessible applications are the main reason for this vulnerability type to occur.

Software-Level:-

 Access rules seems to be useful in blocking some of the patterns. However, it does

not protect as needed.

Questions?

Mazin Ahmed
Twitter: @mazen160

Email: mazin AT mazinahmed DOT net

Website: https://mazinahmed.net

LinkedIn: https://linkedin.com/in/infosecmazinahmed

https://mazinahmed.net/
https://linkedin.com/in/infosecmazinahmed

