
 

 

 

 

 

Overview of the Application-Level 

Security of the Swiss E-voting System 
Author: Mazin Ahmed <mazin@mazinahmed.net> 

April 2019 

 

 

 

 

 

 

 

 

 
 
 

mailto:mazin@mazinahmed.net


1. Introduction 

 

This year, 2019, the Swiss government is planning to fully establish E-voting within 

the next elections. During 25 February to 24 March 2019, the Swiss Post has hosted a 

public program where researchers, hackers, and professionals can register for a 

program where they can attack the Swiss E-voting system in a controlled 

environment. Any individual who identifies a security vulnerability or a potential 

attack that affects the system can report it to the Swiss Post program, where the 

Swiss Post will analyze and fix the finding as well as financially rewarding the 

reporter. The Swiss Post has also released the source code of the system as a 

separate program, but rewards were only paid if the individual were only able to 

exploit the weakness on the public program. 

  

I wanted to write this research to show an overview of the Swiss Post E-voting 

system security from an application level. I am a security consultant with years of 

experience in auditing applications security. You can read more about my work at 

mazinahmed.net. 

 

The conducted analysis mainly focuses on the security overview of the application. It 

does not cover cryptographic implementations within the system. 

 

 

 

 

https://mazinahmed.net/


2. Findings 

 

2.1 CSP Misconfigurations 

 

Content Security Policy (CSP) is a standard for protecting against XSS vulnerabilities 

on the browser level. Reviewing the Content Security Policy used by The Swiss 

E-voting system, I found a bypass for the policy: 

 

The CSP for Swiss E-voting System (as of February 26th, 2019): 

Content-Security-Policy: default-src 'none'; script-src 'self' 

'unsafe-eval'; style-src 'self' 'unsafe-inline'; img-src 'self'; 

connect-src 'self'; child-src 'self'; font-src 'self' 

 

A well-written CSP should prevent the exploitation of XSS attacks. This above policy 

allows `unsafe-inline` and `unsafe-eval`. This opens a door for typical JavaScript 

vectors to be executed. For example, 

 

<script>alert(“inline JS”);</script> 

 

Can execute normally as inline JavaScript is permitted by the policy. 

 

It’s a clear finding that can be marked as a “bypass of an implemented protection 

layer”. However,  I can’t say it’s a severe issue, as this needs to be combined with an 

XSS (Cross-Site Scripting) vulnerability in order to be effective. Without the presence 

of an XSS vulnerability, I can not make use of this issue or exploit the CSP 

misconfiguration. 

 



2.2 Authentication Issue 

 

There is a severe issue in the authentication flow that the Swiss E-voting system is 

using to authenticate voters. Although the exploitation of this issue is relatively 

impossible to go with detection, it’s a scenario that can pose a threat to the 

authentication system. 

 

Before demonstrating the attack, I’m going to briefly discuss the authentication flow. 

 

1. The voter receives the voting card by mail. 

2. The voter enters their identification code. This code is uniquely assigned for 

each voter. 

3. An authentication token is generated according to the voter identification 

code. This token is returned in the response, and used in future steps in the 

voting process. 

4. The encryption/decryption keys are then requested using the authentication 

token.  

 

The steps go from this point until voting completes for the voter. 

 

From the above demonstration, we can see that the authentication token generated 

per each voter is the key to compromise any vote. If an attacker can obtain an 

authentication token, they can vote on voters behalf. This clearly affects the system 

directly.  

 

The structure of the authentication token is the following: 

[0-9A-F]{32} 

Which is the same pattern as MD5 hash scheme. 



In all cases, attempting to try all possibilities the authentication tokens requires 3.4 ^ 

38 requests. There is no way that this is done or tested correctly without being 

noticed. The possibility of having a correct brute-forcing attack is quite low, and the 

execution is difficult and requires a lot of resources. An additional note is that the 

web-server does not support HTTP/2 or HTTP Pipelining, so reusing the same TCP 

connection in order to do multiple HTTP requests is not possible. 

 

After reporting the attack to the Swiss Post, I found that an attacker would require to 

obtain a verification code that is 8-digits numeric code. Although this attack was 

already almost impossible to achieve, it’s much more difficult to achieve with the 

verification (finalisation) code check.  

 

 

2.3 Using components with known vulnerabilities 

 

When the source-code was released, I analyzed the components and the 

dependencies of the Swiss E-voting system. There are a number of disclosed security 

vulnerabilities that are known by NVD. I’m highlighting the CVE IDs below: 

 

● CVE-2018-7489 

● CVE-2018-3745 

● CVE-2018-3737 

● CVE-2018-3728 

● CVE-2018-3721 

● CVE-2018-19362 

● CVE-2018-19361 

● CVE-2018-19360 

● CVE-2018-16472 



● CVE-2018-14721 

● CVE-2018-14720 

● CVE-2018-14719 

● CVE-2018-14718 

● CVE-2018-1275 

● CVE-2018-1272 

● CVE-2018-1271 

● CVE-2018-1270 

● CVE-2018-1257 

● CVE-2018-12022 

● CVE-2018-1199 

● CVE-2018-11040 

● CVE-2018-11039 

● CVE-2018-1000850 

● CVE-2018-1000844 

● CVE-2018-1000643 

● CVE-2018-1000620 

● CVE-2017-7525 

● CVE-2017-18214 

● CVE-2017-17485 

● CVE-2017-17461 

● CVE-2017-16138 

● CVE-2017-16137 

● CVE-2017-16114 

● CVE-2017-16113 

● CVE-2017-16028 

● CVE-2017-15095 

● CVE-2017-15010 

● CVE-2017-1000427 

 



If an application is using a vulnerable dependency or component, that doesn’t 100% 

confirms that the application is vulnerable. I haven’t explored all the vulnerabilities 

due to a shortage of time. A fix is essentially simple: update to the latest patches 

while ensuring the newest patches do not break the functionalities of the system. 

 

 

2.4 Rate-Limiting Issues 

The authentication process on the checking the is heavily protected using 

rate-limiting and similar mechanisms during the initial authentication step. The 

aggressive rate-limiting measures create a possibility of mass-locking voters from 

elections if an unauthorized party is capable of identifying the voter’s identification 

code. However, this does not seem to be an issue since the identification code length 

is relatively long, and a similar attack can be easily seen and identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Public Intrusion Test Findings 

 

After the PIT is done, the Swiss Post has publicly disclosed the valid findings reported 

in the PIT. The following issues were identified: 

 

● [BEST PRACTICES] Crafted X-Forwarded-For HTTP header injection 

● [BEST PRACTICES] Missing HTTP to HTTPS redirection on 

'pit-admin.evoting-test.ch' 

● [BEST PRACTICES] Outdated version of Bootstrap Web Framework 

● [BEST PRACTICES] Vulnerable TLS cipher-suites (LUCKY13) 

● [BEST PRACTICES] Missing 'Expect-CT' HTTP header 

● [BEST PRACTICES] Missing 'base-uri' in Content Security Policy 

● [BEST PRACTICES] Incorrect 'HTTP-Strict-Transport-Security' header on 

'pit-admin.evoting-test.ch' 

● [BEST PRACTICES] Use of 'unsafe-eval' and 'unsafe-inline' in Content Security 

Policy 

● [BEST PRACTICES] Multiple occurrences of 'X-XSS-Protection' HTTP header 

● [BEST PRACTICES] Use of outdated version of AngularJS 

● [BEST PRACTICES] Strict Transport Security Mis-configuration 

● [BEST PRACTICES] Use of cipher suites without forward secrecy support 

● [BEST PRACTICES] Missing charset declaration in some response’s 

Content-Type header 

● [BEST PRACTICES] Missing CSP header in redirect responses 

● [BEST PRACTICES] Cross Origin Request possible on specific endpoint 

● [BEST PRACTICES] Missing CSP header on http://pit-admin.evoting-test.ch/ 

 

The details of the PIT findings are published online at: 

https://www.onlinevote-pit.ch/stats/ 

https://www.onlinevote-pit.ch/stats/


 

I wanted to note that every single finding mentioned here poses a low impact and 

the risk is relatively low. Consultants do not consider the majority of these issues an 

actual threat to the application unless it’s combined with another vulnerability that 

can cause damage. In fact,  I encountered the vast majority of these 16 findings on 

the Swiss E-Voting site during the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Conclusion 

 

I was able to identify security vulnerabilities on the Swiss E-voting system, but I was 

not able to break the system. 

 

I haven’t reported the findings to the PIT because of the reasons mentioned in this 

report, but I have shared the report with the Swiss Post privately. 

 

It’s also worth-noting to state that the Swiss E-voting system that was included on 

the Public Intrusion Test covers the voter’s interface. The backend/admin panel for 

the voting system was not covered in the Public Intrusion Test. It was formally in the 

scope but were not accessible for researchers. The goal of this part is to simulate an 

actual election system in real-world, where only authorized parties are capable of 

accessing the administration panel. Attempting to access the administration panel 

was in the scope. 

 

Several bugs were also discovered in the source code of the Swiss E-voting system by 

third-party researchers. However, researchers were not able to remotely exploit the 

findings and attacks on the live Swiss E-voting system during the Public Intrusion Test 

due to the extensive protection measures done by the Swiss Post side. 

 

The Swiss Post did a great work on mitigating a number of attacks on the E-voting 

system. The server configuration, the infrastructure design, and the 

web-application-firewall setup made the attacks much more difficult to conduct. The 

results, and the fact of not having proven a full remote attack against the system 

reflects the maturity level of the web application security. 

 



I’m very glad to have the opportunity to test the Swiss E-voting system. It’s a big 

move that I’m hoping it to become a reality this year. The disclosed vulnerabilities 

can be fixed. I have also been informed that a number of the vulnerabilities were 

already patched before publishing the report.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mazin Ahmed 
Email: Mazin@MazinAhmed.net 

Website: MazinAhmed.net 

CV: MazinAhmed.net/cv 

LinkedIn: https://Linkedin.com/in/infosecmazinahmed 

mailto:Mazin@MazinAhmed.net
https://mazinahmed.net/
https://mazinahmed.net/cv
https://linkedin.com/in/infosecmazinahmed

